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I. INTRODUCTION

These days, we observe a massive shift from virtual
machine based to container based deployment. This trend
includes companies with an established VM presence, who
are considering (or conducting) massive scale migrations of
their infrastructure into containerized environments.

As their main principle, containers address the waste of
resources on multiple iterations of the same kernel space.
By sharing the kernel, we can allocate more memory and
CPU time to userspace tasks. In theory, this should result in
a higher efficiency, given the same specs of underlying
hardware.

From system administrators' point of view, efficiency
means that operating more applications with the same
performance and limited capacity of hardware resources.
From developers' point of view, efficiency with container
based environments means less man-hours for development
and distribution. Our focus will be on the former -
infrastructural - gains.

In our experiments, we would deploy the same workload
to virtual machines and containers respectively, and measure
how much hardware resources are used and how good
performance is. The applications will differ depending on
their reliance on kernel-space resources.

Based on the results, we would find the optimal sizing of
virtual machines and containers in comparison and
determine whether container based environments are more
efficient than virtual machine based environments.

II. MOTIVATION

A. Intellectual Merit
Resource allocation and quota management are difficult

problems to solve. Most teams struggle to get right - given
way too many resources away or too little. Optimal sizing of
VMs and containers and dynamically adjusting could help
optimize overall cluster resources. So, it is important for
large clusters with multiple teams and projects.

B. Novelty
Most literature and online narrative tries to argue general

supremacy of one approach over the other. Our focus will be

on kernel-space dependency and how it shapes the overall
resource usage in VM and container based setups. We
suspect that shared kernels might play a role in some
application types.

C. Impact
When deciding between VM and container based

application, there is no simple set of guidelines which would
allow businesses to choose the most profitable solution.
Usually, the influence of service providers guides
companies into an environment mostly benefiting the
former.

We are hoping to output a clear and concise narrative
which will address this matter taking into consideration the
kernel-space dependency of our business application.

Our combined experience in the IT space - ranging from
hands-on to executive roles - will allow us to gauge
commercial impact of proposed solutions. We’re also
hoping to evaluate the carbon footprint savings which can
be achieved by our proposed optimization.

III. IMPLEMENTATION

We are planning multiple experiments. It will be further
detailed as the research progresses. There will be two major
categories of measurements:

A. VMs and containers on a single host
In a single host experiment, we would perform the bare

measurements of similar distributed workload on a single
server. The focus is to compare the shared kernel with the
dedicated kernel. First, we would monitor CPU and memory
resource usage of running VMs and configure the right size
and counts of containers. Then, we would switch VMs to
containers and measure performance and resource usage.
Even if we allocate almost the same CPU and memory, the
container will be lighter than the VM. However, there is also
the capacity used by kubernetes, so we can compare how
much difference it actually is. And the result will be
different depending on workloads. Therefore, the
experiment will proceed while deploying different kinds of
workloads such as data intensive workloads.

B. VMs and containers across multiple hosts
In a multiple hosts experiment, we would measure the

performance trade-off between live migration and restarting
virtual machines and containers. Live migration is moving
from a virtualization host to another. Restarting would be in



the same host. The reason why people operate VMs and
containers is to guarantee high availability. Therefore, live
migration and restarting are very important functions in
virtualization, especially in dynamically scalable
environments. We would measure performance and resource
usage while moving VMs and containers across multiple
hosts, and we would calculate the trade-off.

In each category, we are going to simulate a different
level of kernel-space dependency. Our goal is to minimize
the influence of all other variables, such as external
resources (storage, network).

To achieve this, we are going to use the following tasks
as kernel-space heavy markers:

- GPU calculations
- loopback networking
- random number generation

As our research progresses, we are hoping to identify
other kernel-intensive tasks to fine tune our measurements.

The ultimate goal is to establish a threshold for real-life
applications which might trigger a choke point on the kernel
space. We expect this might counter potential benefits of
saved resources (mostly RAM) in overall efficiency
analysis.

IV. RELATED WORKS

In this section, we review the related work to clarify the
problem to be addressed. We discuss virtualization and
containers overhead, architectural patterns and their
overhead, and simulating kernel space load.

A. Virtualization & containers overhead
Container-based virtualization is the latest technology to

virtual machines and is quickly replacing them in the cloud
environment, as in [1]. Containers are similar to virtual
machines in the services they provide although containers
don’t run a separate kernel and virtualize all hardware
components theoretically. Reference [1] measured various
parameters of containers and virtual machines. Throughput
is the parameter of cpu performance and disk performance.
Bandwidth is the parameter of memory performance and
network performance. Latency is the parameter of
application performance. Reference [1] concluded that the
performance of containers and VMs were almost identical
except the case of I/O bound applications. It was worth
noting that these parameters were used for measurements of
performance, but reference [1] did not disclose clear figures
and implement any detailed experiments. We could only
assume that containers and virtual machines were roughly
similar and could not estimate optimal sizing.

The purpose of virtualization is efficiency, which is
operating more applications with the same performance and
limited capacity of hardware resources from system
administrators' point of view. We can call it server
consolidation, in which the maximum workload is allocated
to the minimum number of physical servers. Virtualization
technology drives server consolidation using virtual
machines or containers [2].

The consolidation overhead is the extra workload that
the system incurs for managing several VMs or containers.
Reference [2] proposed a general method for quantifying

and graphically representing the consolidation overhead
from the perspective of the physical server. Overheads are
calculated as the difference between the mean response
times in the different virtualization scenarios of the
combination of physical servers, virtual machines, and
containers. Reference [3] found where the overheads came
from in depth. There may be other reasons for overheads,
but OS schedulers also make overheads because they ensure
fair sharing of CPU time even for idle virtual machines and
containers when multiple virtual machines and containers
are running on the same physical server. Reference [2] and
[3] are useful to measure the overhead of VMs and
containers by CPU utilization. However, additional
measurement of memory or disk is required to achieve
optimal sizing.

Experiments in this paper will be carried out at the scale
of single or multiple hosts, but we also referred to the papers
about large-scale computing to find the measurements of
compute resources. Reference [5] measured normalized core
unit hours and normalized memory unit hours and
CPU-to-memory ratio to measure machine utilization. It
considered scheduling delays and terminations to operate
stable clusters. Reference [6] presented a detailed analysis
of warehouse scale computing including memory allocation
and kernel. To achieve efficient resource management,
reference [4], [5] and [6] took the top-down approach from
clusters while we would take the bottom-up approach from
VMs and containers.

B. Architectural patterns and their overhead
As part of our research we not only compared the

difference between virtualization and non-virtualized
environments, we also have taken in consideration the
overhead produced by using different technologies and
frameworks. Nowadays, the microservices architectural
style is widely used and has become one of the standards in
academia and industry for developing software. This pattern
intends to compose of small independent services that
communicate over well-defined APIs to encourage
decomposition of monolithic applications into multiple
independently deployed units.

In [11], Tuan et al. evaluates and compares different
development frameworks for microservice-based
applications used to improve developers’ productivity by
designing reusable components, in particular Go Micro
(Go), Moleculer (JavaScript with Node.js), Lagom (Scala),
and Spring Boot/Spring Cloud (Java) - few of the most used
frameworks. One of the key differences noted is in the use
of JVM-based implementations, which have long latencies
producing applications to start slowly. No major difference
could be noted in end-to-end latency performance, since all
four implementations show similar behavior, although to
different extents. Finally, when discussing resource
consumption, Go based applications showed the ability to
create smaller Dockerized services compared to Lagom or
Spring Boot and also needed produced cpu and ram usage.
There is no one-size-fits all solution when choosing a
microservice framework, but the results showed that Go
applications' smaller images and footprint could be
beneficial to be created and deployed quickly, leading to
faster update cycles.

Comparing the performance of those three popular Web
technologies, Node.js, PHP and Python-Web which are
vastly used in the internet, showed the superiority of the



asynchronous programming paradigm on Node.js [13, 14].
Node.js performs much better than the traditional technique
PHP in high concurrency situations, no matter in benchmark
tests or scenario tests. PHP handles small requests well, but
struggles with large requests. At the same time, Node.js has
performed better than the Python server. Node.js was better
at handling multiple users submitting requests
simultaneously, where the number of requests handled by
Node.js were almost 250 times higher than those handled by
Python.@

Ueda et al. used an open-source benchmark application
for web services called Acme Air, to analyze the behavior of
microservice and monolithic applications, for two widely
used language runtimes, Node.js and Java Enterprise Edition
(EE) [12]. They noted significant differences between the
different architectures, where the microservices model can
be 79.1% lower than the monolithic model on the same
hardware configuration due to the application in a
microservice model spends a longer time in a server
runtime, such as a communication library, than that in a
monolithic model for both application server frameworks.
The throughput of the microservices experiment was always
significantly lower than that of the monolithic model when
the rest of the configuration options were the same. This
suggests that we need to trade off between the benefit from
agile development and the cost from performance overhead,
both due to the microservice model. On the other hand, Java
EE application server outperformed a Node.js application
server on the 4 and 16 cores, except the 16-core
bare-process configuration, while a Node.js application
server outperformed a Java EE application server on a single
core with the monolithic application.

Finally, to complement all of this information, Kumar et
al. attempt to characterize three popular communication
protocols - REST, gRPC, and Thrift, in terms of their
network, memory, CPU utilization, and response time [18].
Trying different approaches to optimize the communication
between client and server applications on the same host and
varying the payload using these different protocols authors
concluded that Thrift performs the best for communication
between microservices due to rapid serialization and
deserialization of the packets, followed by gRPC with its
fast protocol buffers.

C. Simulating Kernel space load
The focus of our study is on Unix Kernels, with Linux

based images forming the vast majority of commonly used
containers hosted on Docker Hub (and therefore utilized in
commercial products).

Unix Kernel was originally designed in the 1970 as a
monolithic structure responsible for all low level requests
with direct access to computer hardware. Since the early
days, it supported the distinction of kernel vs user space.
With the popularity of Open Source, the user space software
quickly outpaced system calls in terms of volume and
functionality. [15]

The purpose of our work is to determine how the optimal
VM and container sizing changes depending on the kernel
load itself. Many commercial guidelines exist focusing on
virtualization itself. Separately, containerized environments
are usually evaluated from the point of view of
orchestration, assuming that virtualization happens
independently from the business application (a layered

approach). What we are trying to show is that there is no
single best approach, as the shared kernel can become
overloaded and undermine any performance gains from our
user space scaling.

The significance of our approach is even greater if we
consider numerous exploits that have recently plagued CPU
architecture, such as Spectre and Meltdown. The patches for
those two alone are responsible for more than doubled
latency of the most common kernel operations [16]. This
causes a lot of performance issues for established container
clusters - both on prem and cloud. In those environments,
both the underlying architecture as well as node’s kernel
version are always outside of the scope of software
developers and maintainers. The prevalent “cloud mindset”
puts the focus exclusively on the user space execution.
Resulting performance decline can easily affect a delicate
structure of microservices, where suddenly introduced
latency breaks time-sensitive operations of a business
application.

For commercial relevance, our experiments will focus on
those system operations mostly affected by increased
latency:

- read & write
- mmap
- poll
- select.

Our goal is to identify the most common use cases
depending on these system calls and kernel functions. We
will attempt to conduct experiments with their popular
software implementations available on Docker Hub.

Similarly, we want to measure the performance hits
across various microservice communication protocols:

- rest
- grpc
- thrift.

We will attempt to answer the question: is the fine tuning
of payload size and network stack able to counter the kernel
space losses. We’re going to use Prajwal Kumar’s paper as a
reference point for our experiments [17].

Another popular trend observed in the last decade is a
growing use of GPUs in computational tasks. In the second
part of our study, we’re going to build a vmware
environment with compatible NVIDIA 3080 GPUs, as
presented in [19].

In this setup, the kernel's role is limited to serving as a
pass through between the user space and a PCI device. We
will try to establish how badly the recently introduced
patches affect our GPU setup in the most common
computation scenarios (TensorFlow, MUMmerGPU).

Finally, we will try to manipulate the shared GPU
memory as presented in [20] to see if we can counter the
effects of extra kernel space overhead.

V. SOLUTION ARCHITECTURE

In order to provide network administrators with a usable
deliverable, we have designed a tool called Load &
Performance Evaluator (LPE).



It is a client-server model based solution, comprising of
two parts:

- Client: this is an LPE script to be executed from
within the environment being evaluated. It uses
bash, python and stap to collect the KPIs. It also
acts as a UI for the end-user.

- Server: the server contains a database of
measurements and business logic which determines
a final recommendation presented to the user. It is
implemented in a continuous fashion: the more
data is provided to the database, the better are its
outcomes.

The overall architecture is presented below:

It is recommended to run LPE on a bare metal server, to
ensure there is no virtualization overhead or limited kernel
access which would interfere with KPI collection or mangle
the data.

VI.KPI MODELS

The Key Performance Indicator (KPI) package collected
by LPE client contains the following datasets:

- list of processes along with the proportion of time
spent in User and Kernel space

- list of processes along with resources used
- version of installed packages
- IOPS stats per process
- network stats per process

While LPE does not collect any other information, such
as a local file or database content, it is recommended to run
it in a staging environment, without access to any sensitive
information. Due to the nature of its low level access
(profiling kernel requests) it has to be run as root.

The output of an LPE procedure is a workload
classification. It could be categorized as either VM or
Container. This is based on the assumption that modern
CPUs will be used in production with virtualization support
enabled in BIOS.

Our original plan was to have another possible category:
bare metal. However, in our experiments we have found that

the virtualization penalty does not depend on User/Kernel
space utilization and is of negligible value. Even at large
scale, when <1% performance gains come into play, we
believe that the additional overhead cost of not being able to
use virtualization would nullify any economical benefits.

It is worth noting that for the Container category, we
assume container daemon running without virtualization.
For hybrid VM/Container deployments, LPE will not be
able to provide accurate recommendations.

Based on our experiments, we designed a classification
model which is a combination of 2-dimensional continuous
spectrum and a set of bias vectors.

The two dimensions are:

- proportion of time spent in User space to total time
(from 0.0 when fully Kernel space to 1.0 when
fully User space),

- memory usage.

Both datasets are calculated by LPE for a dominant set
of processes (based on resource allocation). The bias vectors
represent:

- JVM presence,
- IOPS utilization,
- network utilization,
- per-package adjustments.

IOPS and network utilization does require bias because
of imperfect implementation of passthrough drivers. In
many environments, administrators keep the default
virtualized network and storage controllers as default
options for VMs.

Our experiments revealed serious Java bias towards
virtualization. It looks like the JVM memory optimization
does benefit from unrestricted kernel/OS access and
constraining it to a container is counter-productive.

Finally, we kept the per-package adjustment option for
future discoveries of products similar to Java, which might
introduce bias to our generic model.

The JVM bias vector shown in the example model above
is applied to any point in the KPI space, effectively
promoting the VM solution over containers. For LPE to



apply the bias, JVM needs to be a part of the dominant (i.e.
highest load) processes. This is typically indicative of Java
being used for the main business load rather than an
auxiliary process.

VII. EXPERIMENTS

When collecting data to train our models, the main focus
was on not contaminating the workloads with additional
overhead. In particular, all kubernetes worker nodes were
bare-metal, contrary to popular deployments of virtualized
k8s.

The following product versions were used in our lab (R1
& R2 servers, as per defined specs):

- ESXi 7.0 Update 3g (Build 20328353)
- Kubernetes 1.23.10

Kubernetes was installed on Ubuntu Server 22
(bookworm/sid) running 5.15.0-47-generic SMP Kernel.

One of the biggest challenges we had to address were
CPU hyperthreading mitigations. Over the past few years,
multiple exploits surfaced using the HT as an attack vector.
Since the vulnerabilities are inherently inside the CPU
hardware, there are no solutions other than removing some
of the HT optimizations using the so-called mitigations.

Unfortunately, those result in serious performance
penalties, sometimes exceeding 50%. In addition, they affect
our measurements by introducing ambiguity, as it’s not easy
to determine if reduced performance comes from
virtualization overhead or HT mitigations.

For that reason, to level the playfield between both
technologies, we have disabled all known mitigations on
both platforms. This involved:

- for ESXI - we disabled “Side Channel Mitigation”
option on all the hosts as well as disabled kernel
mitigations in VM guests

- for K8s - we disabled kernel mitigations in host OS

In order to disable kernel mitigations, we’ve used the
following set of boot parameters:

noibrs noibpb nopti nospectre_v2 nospectre_v1 l1tf=off
nospec_store_bypass_disable no_stf_barrier mds=off tsx=on
tsx_async_abort=off mitigations=off

There were two sets of experiments performed during
our research:

A. Space & Memory Spectrum (Python / Celery)
We chose Celery as the main tool to distribute and

measure workloads across multiple VMs and containers.
The reasons behind this choice were:

- easy to control the number of concurrent threads
(workers)

- easy to control resource allocation
- ability to measure actual execution time.

The last point was crucial in order to eliminate the
container spin-up times from time calculations. We show the
summary timeline in a table below.

The actual celery manager process, as well as the
communication layer (Redis 4.7.1) were hosted outside of
the evaluated environment.

# Supervisor K8s VM

1 (idle) (idle) Launch VMs

2 Submit tasks Trigger workload Time Start

3 (idle) Launch Pods (payload)

4 (idle) Time Start Time Stop

5 (idle) (payload) Return Time

6 (idle) Time Stop -

7 (idle) Return Time -

8 Collect Tasks - -

9 Save Classification Result (K8s / VM)

The measurements were repeated numerous times,
changing the simulation parameters as follows:

- X-axis: memory allocation per a single pod or VM,
starting from 2 GB up to 36 GB with 2 GB
increments. The number of pods/VMs was then
adjusted to fill up the host machine keeping 2 GB
free for host OS.

- Y-axis: changing the payload through python
library calls and manipulating the time spent in
kernel vs user space. For each payload, a separate
measurement was performed using systemtap to
confirm the ratio.

The outcome of Space & Memory experiments is the
curved line shown in our sample model above dividing the
Container and VM clusters (polynomial approximation).

B. Java Bias Vector
In order to measure the Java bias, we first observed the

dominant performance of VM based deployment. Then,
we’ve prepared a set of test business workloads with
varying user/kernel ratio using off the shelf products, such
as Libre Office (headless + PDF + SSL).

Then, a baseline performance was established using VM
configuration. Time measurements were performed and
recorded for a limited subset of 12 spectrum datapoints (3
ratios x 4 memory configurations).

Afterwards, the same workload was deployed using a
container, making sure to match as many underlying
libraries as possible (in particular glibc and openssl). We
then tried to change X and Y axis values in order to match
the median baseline outcome. The result is our JVM Bias
Vector.

VIII. CONCLUSION

A. Database Schema & The Classifier
Upon conclusion of our tests, we put together an

endpoint designed to store the results as well as use them to



train a classifier model which will later be used to reply to
LPE client requests.

Data collected during experiments has been structured in
the format described above, and is stored in a relational
table. The main data tape format is presented below:

Column Name Type Description

user_ratio Float (0.0 - 1.0) Proportion of
time spent in
user vs kernel
space

mem_size Integer (MB) Memory
allocated to a
single
computation unit

category Enum (K/V) Deployment
yielding faster
results
(Container/VM)

is_java Boolean (Y/N) Is the workload
predominantly
Java based

In addition to raw results, we also stored auxiliary data,
such as experiment IDs, hardware specs, CPU architecture,
etc.

Results were collected as CSV files, and were ultimately
stored in a PostgreSQL database. For the training model, we
used Keras classifier based on TensorFlow decision models.
It was then connected to a Flask based web service, which
served as an LPE backend.

An LPE request would carry information about the
memory consumed by the predominant group of processes,
measured user to kernel ratio, number of predominant
threads, CPU architecture and a Java flag. Note that not all
of those features were ultimately used in decision making.

A sample request is shown below:

{"mem_main": 2695, "user_time": 0.9185, "java_main": 0,
"cpu_arch": "x86_64", "threads_main": 9}

The backend would then reply with:

{"class": "K", "bias_applied": 0}

In this case, it is recommended to use containers for
production deployment.

A sample classification result was shown in chapter VI.
Over 600 tests were performed in order to train the model.
We trained two separate classifiers for Java and non-Java
domains and then aggregated the differences into a bias
vector.

B. Real Time Application
It is worth noting that despite a seemingly dominant role

of VM category, most real life applications have the
following parameters:

- U/K Ratio ~ 0.95
- Memory Alloc ~ 0.75 GB

This observation was based on our commercial
experience, where we were able to measure real life
business applications, such as fintech ledger systems,
marketing platforms and DevOps tools.

As such, it is no surprise that containers remain a valid
choice for the majority of commonly used software. A
notable exception here are Java based applications, which
are - however - usually delivered as singletons (i.e. single
node) rather than scalable clusters of pods or VMs.
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