
LLMZ+: Contextual Prompt Whitelist Principles for
Agentic LLMs

Tom Pawelek1, Raj Patel2, Charlotte Crowell2, Noorbakhsh Amiri Golilarz2,
Sudip Mittal2, Shahram Rahimi2, and Andy Perkins1

1Mississippi State University, Mississippi State, MS, USA
2The University of Alabama, Tuscaloosa, AL, USA

Abstract—Compared to traditional models, agentic AI repre-
sents a highly valuable target for potential attackers as they
possess privileged access to data sources and API tools, which
are traditionally not incorporated into classical agents. Unlike
a typical software application residing in a Demilitarized Zone
(DMZ), agentic LLMs consciously rely on nondeterministic
behavior of the AI (only defining a final goal, leaving the
path selection to LLM). This characteristic introduces substan-
tial security risk to both operational security and information
security. Most common existing defense mechanism rely on
detection of malicious intent and preventing it from reaching
the LLM agent, thus protecting against jailbreak attacks such
as prompt injection. In this paper, we present an alternative
approach, LLMZ+, which moves beyond traditional detection-
based approaches by implementing prompt whitelisting. Through
this method, only contextually appropriate and safe messages
are permitted to interact with the agentic LLM. By leveraging
the specificity of context, LLMZ+ guarantees that all exchanges
between external users and the LLM conform to predefined
use cases and operational boundaries. Our approach streamlines
the security framework, enhances its long-term resilience, and
reduces the resources required for sustaining LLM information
security. Our empirical evaluation demonstrates that LLMZ+
provides strong resilience against the most common jailbreak
prompts. At the same time, legitimate business communications
are not disrupted, and authorized traffic flows seamlessly between
users and the agentic LLM. We measure the effectiveness of
approach using false positive and false negative rates, both of
which can be reduced to 0 in our experimental setting.

Index Terms—security, LLM, Prompt injection, Prompt jail-
break, Agentic AI, LLMZ+, Prompt whitelisting, Contextual
whitelisting

I. INTRODUCTION

Throughout commercial and academic applications, there
are numerous products, studies and libraries designed to
prevent malicious prompts from interacting with LLMs in
production environments. All of these approaches operate on
the principle of identifying malicious messages and blocking
their progression within the system. The inherent structure is
similar to that of traditional anti-malware products, relying
on a predefined set of signatures and heuristics. Since all
detection is driven by these definition databases, they must
be updated regularly. When a new attack technique emerges,
the definitions must be revised to ensure that the system can
recognize the new threat.

These products, therefore, introduce additional capital ex-
penditures (CapEx) [1] and operating expenses (OpEx) [1],
as their maintenance requires specialized resources. They also
pose a hidden risk of “failing silently”, whereby outdated or
delayed definition updates can result in the system providing
a false sense of security while remaining vulnerable to newly
developed attacks. Our objective was to design a framework
that is more accommodating for administrators and is based on
a security principle that leverages the contextual information
of the subject being served by the agentic LLM.

In developing our solution, we drew inspiration from the
most secure practices employed in perimeter firewall design.
Rather than maintaining an exhaustive database of all global
threats (sources, payloads, etc.), the recommended strategy
is to allow only those types of traffic that are explicitly
recognized as safe and legitimate, while blocking all other
network packets [2]. As a result, a typical configuration
specifies the scenarios in which access is permitted (such
as traffic originating from domestic IP addresses, residential
internet service providers, or specific destination ports) which
is then concluded with a catch-all rule: DENY ALL.

This approach relieves network administrators from the bur-
den of maintaining an ever-growing list of foreign addresses,
Virtual Private Network (VPN) [3] subnets, exploited ports and
daemon processes [4], and and other threat definitions. Instead,
the system operates on the principle that only recognized
and compliant traffic is permitted. We adopt this foundational
principle and apply it to the design of our LLM guard, as
described in the following sections.

In this paper, we present LLMZ+: a solution designed to
safeguard agentic AI models against prompt injection attacks.
Prompt injection is a form of jailbreak attack in which mali-
cious prompts are used to bypass built-in checks and override
the control mechanisms of LLMs [5]. Our approach introduces
a contextual whitelisting mechanism that is grounded in a
comprehensive understanding of analyzed messages, ensuring
that only those prompts relevant to the intended use case are
permitted. The major contributions of this paper are as follows:

• We introduce LLMZ+ (LLM + DMZ [6]) as a conceptual
security boundary for agentic LLMs, drawing inspiration

ar
X

iv
:2

50
9.

18
55

7v
1

 [
cs

.A
I]

 2
3

Se
p

20
25

https://arxiv.org/abs/2509.18557v1

from the Demilitarized Zone (DMZ) architecture in net-
work security.

• We highlight the limitations of conventional prompt threat
detection and mitigation techniques, which often rely on
static heuristics and often struggle to counter adaptive
adversaries.

• We introduce a framework tailored for business-focused
agentic LLMs, designed for both operational reliability
and security resilience.

• We evaluate LLMZ+ using a benchmark of documented
prompt injection attacks, alongside authentic business
communications submitted to agentic chatbots.

The remainder of this paper is structured as follows. Section
II reviews the current state-of-the-art and related work. Sec-
tions III and IV introduce the LLMZ+ framework and detail
the threat model addressed in this study. Sections V through
VII present our experimental setup, results, and practical
considerations for deploying LLMZ+ in production business
environments. Finally, Section VIII offers conclusions and
outlines directions for future research.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background on previously
explored jailbreaking techniques within LLM as well as de-
fenses that have been presented to combat against it. The phe-
nomenon of jailbreaking in LLMs refers to the circumvention
of built-in safety mechanisms by crafting adversarial prompts
that elicit responses normally restricted by the system’s align-
ment objectives [7]. Early work by Wei et al. [8] introduced
Greedy Coordinate Gradient Ascent (GCG), a method using
suffix-based mismatch objectives and alternate encodings (e.g.,
base64) to bypass safety filters. Building on this, Zou et al. [9]
extended the attack by combining multi-prompt, multi-model
strategies to create universal jailbreak prompts.

Several studies have analyzed the taxonomy of jailbreak
strategies. Liu et al. [7] categorized jailbreak prompts into
three core patterns: pretending, attention shifting, and privilege
escalation. Their study found that both ChatGPT-3.5 and GPT-
4.0 were vulnerable to these methods, with an 86% success
rate. Gupta et al. [10] identified four dominant jailbreak vec-
tors: role-playing (e.g., Do Anything Now (DAN) or Developer
Mode), reverse psychology, model escape, and prompt injec-
tion. These techniques can be exploited to generate content
for malicious purposes such as phishing, social engineering,
and malware development. Similarly, Yu et al. [11] conducted
a qualitative study involving user-generated prompts, showing
that even untrained users were capable of producing effective
jailbreaks. Their work also introduced a hybrid human-AI
prompting framework, though they noted the AI component’s
difficulty in adapting to semantic nuance.

Beyond prompt engineering, Carlini et al. [12] demonstrated
that brute-force strategies and adversarial multi-modal inputs
(e.g., malicious images) could induce harmful outputs, sug-
gesting a broader surface for attack. Complementing these
studies, Chen et al. [13] proposed a suffix-classification model

that successfully identified and blocked GCG-style jailbreaks
with 96% accuracy.

The challenges extend to multilingual and synthetic lan-
guage models as well. Deng et al. [14] found that LLMs
are more vulnerable in low-resource languages, while Oh et
al. [15] showed that malicious prompts encoded in synthetic
ASCII-based formats could also bypass content filters.

From a system-wide perspective, Yao et al. [16] con-
ducted a large-scale survey on the intersection of LLMs and
security, categorizing existing literature into three thematic
areas: the use of LLMs for defensive cybersecurity applica-
tions (“good”), the misuse of LLMs for offensive purposes
such as cyberattacks (“bad”), and studies addressing inherent
vulnerabilities in LLMs along with corresponding defense
mechanisms (“ugly”). Separately, Das et al. [17] provided
an in-depth analysis of LLM-specific vulnerabilities, includ-
ing jailbreaking, data poisoning, and personally identifiable
information (PII) [18] leakage, and surveyed a broad range of
proposed mitigation strategies.

Among emerging defenses, Reinforcement Learning from
Human Feedback (RLHF) has been foundational in improving
LLM alignment [19], with Ganguli et al. [20] further empha-
sizing red teaming as a critical evaluation method. Additional
efforts like SmoothLLM [21], LLM Guard by Protect AI [22],
and Deng et al.’s SELF-DEFENCE framework [14] employ
strategies such as prompt sanitization, multilingual safety
data generation, and adversarial fine-tuning. Hila et al. [23]
proposed reducing prompt perplexity through translation by a
secondary LLM to improve resilience.

Despite these efforts, a consistent pattern emerges in that
most defenses rely on either input and output prompt filtering
or RLHF-based alignment techniques. Input filtration typically
targets jailbreak attempts, while output filtration aims to pre-
vent the disclosure of Personally Identifiable Information (PII),
or other sensitive content. These approaches often depend on
static mechanisms, such as maintaining and updating keyword
lists or periodically retraining models, which may limit their
adaptability and responsiveness. RLHF, while effective, is
costly, time-consuming, and requires frequent retraining to
remain relevant against evolving attack strategies.

By contrast, our approach, termed LLMZ+, is highly re-
strictive in its behavior, continuously context-aware, and capa-
ble of dynamically enforcing alignment during inference. It ac-
tively monitors whether a prompt deviates from the operational
domain, and any deviation triggers an immediate denial of the
response. This persistent, context-aware, real-time validation
distinguishes our framework from prior defenses that depend
on static filters or periodic model updates. In the next section,
we elaborate on the core architecture and enforcement logic
underpinning the LLMZ+ framework.

III. PRINCIPLES OF LLMZ+

In our context-based approach, we employ a Guard Prompt,
as depicted in Fig. 1, to evaluate all incoming external mes-
sages. Instead of searching for prompt exploits, which may
include a variety of linguistic and mathematical manipulations,

our method ensures that every message is fully understood
by the guarding LLM and corresponds to the expected use
case of the ongoing conversation. To further protect outbound
messages produced by the agentic AI, an information scope
layer can be incorporated. This additional protection may be
integrated directly within the LLM or implemented through
established Data Loss Prevention (DLP) mechanisms [24].
The information scope explicitly defines which categories
of information, such as specific types of PII, the model is
authorized to disclose. For instance, this restriction may only
permit the model to return information that is necessary for a
customer to access their account.

Fig. 1: LLMZ+ Guard Prompt Structure

This approach protects the agentic LLM from a wide range
of exploitive prompts and mitigates the risk of both known
and novel prompt injection attacks. By leveraging the specific
deployment context of the agent, the scope of acceptable
content exchanged with the agentic core is further narrowed,
reducing the potential attack surface.

The result of the Guard Prompt evaluation may be repre-
sented as either a binary decision indicating yes or no, or as a
quantified risk score ranging from 0 to 10 for more nuanced
applications. Ideally, all malicious messages would be assigned
a risk score of 10, while all benign messages would receive a
score of 0.

IV. THREAT MODEL

In this section, we define the specific threat model targeted
by the LLMZ+ framework. We begin by describing typical
deployment scenarios for agentic LLMs in practical business
contexts. Next, we analyze major attack vectors relevant to
these deployments and detail the potential risks they introduce.
We then present our proposed security solution, including both
its architectural design and deployment strategy. This overview
establishes a foundation for understanding the security objec-
tives, effectiveness, and boundaries of the LLMZ+ approach.

A. Typical Agentic LLM Deployment

In our analysis, agentic AI is frequently deployed as a
customer-facing LLM (via web chat, phone audio or mobile
text). In commercial settings, these agentic models are de-
signed to serve specific use cases, such as:

• Providing customer support,
• Facilitating payments,
• Assisting with product or service selection.
It is important to note that our solution does not attempt to

secure generic, all-purpose agents that are publicly accessible
and context-agnostic, where the nature of each interaction is
determined solely by the end-user. Such systems are usually
not hosted within a corporate Demilitarized Zone (DMZ) [6],
which is an isolated network segment positioned between
internal and external environments and commonly used to
provide controlled access to on-premise services. As a result,
these agents generally lack privileged access to sensitive data
sources or APIs. In contrast, agentic LLMs designed for
targeted business tasks often require access to confidential,
non-public information in order to complete their assigned
task.

B. Attack Vectors

Given the privileged access held by these agentic LLMs, at-
tackers may attempt to exploit prompt engineering techniques
to “jailbreak” the model and gain unauthorized control over
sensitive information. For an agentic LLM integrated with
multiple APIs, manipulating the model to perform arbitrary
API calls and reveal the results is analogous to obtaining shell
access to a compromised server. The consequences of such
breaches are similar to those of traditional network intrusions
and typically manifest in two primary forms:

• Sensitive data leakage: The compromised LLM may be
used to extract personally identifiable information (PII),
financial records, trade secrets, or other confidential data
[25].

• Unauthorized activity: Attackers can induce the LLM to
execute actions resulting in material harm, such as trans-
ferring funds, sending unauthorized communications, or
disrupting system operations.

Although one might assume that the impact is confined to
the data and tools directly accessible to the LLM, in practice,
these attacks often serve as an initial foothold for further lateral
movement within the organization’s network. This type of
exploitation can bypass traditional security controls, including
firewalls and DLP systems.

Attackers typically target the LLM through public in-
terfaces, without requiring any privileged access or insider
knowledge of the AI deployment. For the purposes of this
study, we restrict our focus to prompt-based attacks and do
not address other forms of network or software compromise.
Accordingly, LLMZ+ is not intended to replace a comprehen-
sive information security (infosec) architecture [26]; instead, it
serves as an additional safeguard that protects the LLM from
prompt-based adversarial attacks.

C. Proposed Solution

As shown in Fig. 2, our approach leverages an auxiliary
LLM (in blue), to function as a whitelist guard for both
ingress prompts sent from external users, as well as egress
replies returned by the agentic LLM (in yellow). Following
the “Firewall principle”, instead of attempting to enumerate
and block every possible malicious input, LLMZ+ evaluates
each message against a set of strict criteria.

Fig. 2: LLMZ+ Data Flow

The Ingress filter verifies that messages received from
external users meet the following requirement, such as:

• The message is fully interpretable by the Guard Prompt.
• The message is consistent with a natural customer-service

conversation.
• The message is relevant to the business case served by

the Agentic LLM.
The Egress filter ensures that outbound messages also

remain consistent with the intended business use case. To
enhance our safety mechanism, we can incorporate a very
simple contextual Retrieval-Augmented Generation (RAG),
which informs the guard LLM about the categories of data
that the user is permitted to access (e.g. account information,
balance, transactions, etc.). A simpler variant uses the informa-
tion whitelisting implemented directly in the prompt or regex-
based filter to block the disclosure of sensitive information
like Social Security Numbers (SSNs).

Messages in either direction that do not satisfy these criteria
are blocked, preventing the exploitation of the agentic LLM
through prompt-based attacks. It is important to emphasize
that this solution is designed specifically to address prompting
threats and does not mitigate risks associated with other
layers of the AI deployment stack, such as network security
vulnerabilities or traditional software exploits.

D. Deployment Strategy

Our implementation is evaluated in the context of a com-
mercial fintech chatbot [27] deployed within a highly regulated
retail market in the US. In this deployment, when a suspicious
message is intercepted by LLMZ+, the system notifies a
human operator who can then review the communication or
directly intervene in the conversation as necessary.

To assess the effectiveness of our approach compared to
traditional LLM threat detection methods, we constructed a
controlled testing environment based on an on-premises setup
that includes the following components:

• 2x Llama3.1 [28] / Llama3.3 [29] models (agentic
prompts + guard prompts)

• OpenWebUI [30]
• A static data source and dynamic API accessible to the

Agentic LLM

The primary task in this scenario involves performing cus-
tomer account login and balance confirmation. This represents
a very simple use case, albeit it can be implemented in an
agentic fashion, using a set of OpenAPI calls depending on
how our customers decide to authenticate (account number,
SSN or a phone lookup). This scenario is an example where
case specificity is used as a foundation of context white-listing.
It can be easily generalized to any similar business use.

We conducted two types of evaluations. First, we sent a
representative set of legitimate customer messages through
LLMZ+ to measure the rate of false positives rates. Second,
we utilized a public repository of “GPT Super Prompting”
[31] techniques, which contains the most recent jailbreak
techniques designed to fool LLMs into acting against the
constraints defined by their authors. Our goal was to measure
how many of those prompts would be blocked by LLMZ+, and
how many would pass through (i.e. the false negative rates).

Attack attempts against whitelisting-based filters are com-
paratively rare. key advantage of our approach is the clear
separation of user-supplied messages from the rest of the
LLM prompt, which makes it significantly more difficult for
adversaries to conceal and deliver malicious instructions that
might be executed by our agent.

V. METHODOLOGY

Our system setup is depicted in Fig. 3 and described in
detail in “Deployment Strategy” in the previous sub-section.
The primary objective of our study is to minimize false
rates, ideally reducing them to zero, which would indicate
an optimally configured system with full alignment between
quantified and binary evaluation scores. The false positive and
false negative ratios were experimentally measured as follows:

Fig. 3: LLM Infrastructure Setup

A. False Negatives

False negatives are defined as malicious messages that are
erroneously allowed to be processed by the agentic LLM. This
rate serves as a key indicator of the system’s effectiveness in
threat mitigation. To specifically evaluate the core performance
of LLMZ+, we did not incorporate a Retrieval-Augmented
Generation (RAG) [32] in our tests.

A set of scripts was developed to simulate user inputs,
utilizing prompts from [31]. These prompts were submitted
to a RESTful API endpoint [33], which served as the backend
for a text-based chatbot. The false negative rate was calculated
as follows:

Fnegative = 1−
Cflagged

Ctotal
(1)

where:
• Fnegative refers to the false negative rate
• Cflagged refers to the count of messages flagged by LLMZ+
• Ctotal refers to the total count of messages posted

B. False Positives

False positives are legitimate messages that do not aim
to exploit the agentic LLM, but are incorrectly flagged as
malicious by LLMZ+. While not a direct information security
threat, a high false positive rate could discourage commercial
adoption due to the risk of business disruption and degraded
customer service.

To evaluate the false positive rate, we compiled a collection
of authentic end-user messages from agentic bots deployed
in business environments similar to our experimental context.
These scenarios required customers to authenticate in order
to access restricted information, such as PII. In these cases,
we expect LLMZ+ to allow all legitimate messages to pass
through. The false positive rate was determined as follows:

Fpositive =
Cflagged

Ctotal
(2)

where:
• Fpositive refers to the false positive rate,
• Cflagged refers to the count of messages flagged by

LLMZ+,
• Ctotal refers to the total count of messages posted.

C. Decision Threshold (DT)

For the purpose of our experiment, we define Decision
Threshold (DT) as a cut-off value. Any messages assigned
a score equal to or greater than DT are stopped by LLMZ+
and are not forwarded to the agentic AI worker.

VI. RESULTS AND OBSERVATIONS

To facilitate risk-based decision-making, our experiments
employed a quantified output from the guarding LLM. In this
framework, the LLM produces a risk score between 0 and
10, allowing system administrators to specify the threshold at
which messages are blocked. We conducted experiments using
on-premise Llama models with Llama3.18B , Llama3.370B ,

Fig. 4: False rates, Llama3.18B , Ctot = 71

Fig. 5: False rates, Llama3.370B , Llama3.1405B , Ctot = 71

and Llama3.1405B configurations. Each incoming message
was evaluated ten times using the Llama3.18B model, and
three times with the other two models. This repeated evalua-
tion was performed to capture worst-case scenarios, although
a single evaluation would generally suffice in production envi-
ronments. The maximum risk score observed for each message
was recorded as the final outcome. For the Llama3.18B
model, as depicted in Fig. 4, the first false negative was
observed at a decision threshold of 6. Threshold values of 9
and 10 were found to be insecure, as they allowed an excessive
number of malicious messages to pass through.

As anticipated, transitioning from the Llama3.18B model to
the Llama3.370B model resulted in a marked improvement in
detection performance, effectively reducing the false positive
rate to zero, as shown in Fig. 5. This enhancement can be
attributed to the design of our guard prompt, which requires
sufficient model capacity to enforce rigorous message filtering.
The evaluation process involves two distinct layers: the guard
prompt and the subject message. The overall prompt length,
along with the complexity of these layers, may exceed the
processing capabilities of the Llama3.18B model. Nonethe-
less, there is an optimal range of decision thresholds between
6 and 7 for Llama3.18B , which balances the detection of
malicious content with the minimization of false positives. For
the Llama3.370B and Llama3.1405B models, a broader range
of thresholds from 1 to 5 yields a false positive rate of zero.
This flexibility enables fine-tuning of the pass-through criteria
based primarily on the desired level of sensitivity for malicious
message detection.

In practical business deployments, LLMZ+ is utilized in
combination with a simple message pre-processing step. As
described in the following section, this configuration achieves
ideal performance, resulting in both false positive and false
negative rates of zero across all tested threshold values.
Furthermore, we have successfully implemented LLMZ+ with
various cloud-based models, including Google’s Gemini and
its agentic framework.

VII. PRACTICAL CONSIDERATIONS

When deployed in a production environment, LLMZ+ must
satisfy specific performance requirements to avoid disrupting
the end-user experience. As demonstrated in the Results sec-
tion, both the Llama3.370B and Llama3.1405B models pro-
vide near-perfect detection performance. However, in resource-
constrained settings, their execution times may be prohibitive.
The following considerations outline methods to improve the
efficiency of Llama3.18B deployments.

A. False Positive Overrides

The majority of false positive cases observed with
Llama3.18B models stem from an incomplete understanding
of the guard prompt. In particular, instructions related to asso-
ciating risk ratings exclusively with prompt attack conditions,
rather than with general data sensitivity, tend to be overlooked
by models with fewer parameters. When evaluating LLMZ+
against real-world chatbot transcripts, we found that most false
positives could be attributed to a limited set of frequently
encountered message types, such as social security numbers,
dates (including date of birth), and addresses. These messages
can be detected and bypassed by a simple non-LLM filter,
significantly reducing the false positive rate.

B. Message Pre-processing

Certain characteristics of incoming messages can be ef-
ficiently screened using traditional filters. One of the most
effective checks is to impose a maximum message length.
Prompt injection and related LLM exploit techniques typically
require messages of considerable length to encode their ma-
licious instructions. Such instructions often involve complex
role redefinitions for the agentic model or the inclusion of
encoding and decoding steps that enable the transfer of unau-
thorized content. By limiting the permissible message length,
the system can block the vast majority of these attacks. In our
experiments, a combination of message length filtering and use
of the Llama3.370B model resulted in both false positive and
false negative rates of zero across all decision threshold values
from 1 to 10. In this configuration, all malicious messages
received a risk score of 10, while all legitimate messages were
assigned a score of 0.

C. Parallel Execution

In applications where response time is critical, such as voice
call interfaces, the system can be architected to execute the
Guard prompt and the Agentic prompt simultaneously. This
approach resembles branch prediction in CPUs, where future

instructions are pre-processed in anticipation of conditional
logic outcomes. In this configuration, the agentic response
is withheld until the LLMZ+ decision is available. In the
majority of cases, the LLMZ+ output is returned before the
agentic response, resulting in improved overall system latency.
However, this approach has certain drawbacks.

• It requires double the processing resources since both
LLMs operate concurrently.

• In addition, there is a minor risk that an attacker could
initiate a malicious agentic action prior to the completion
of the LLMZ+ evaluation, although this is rare because
most attacks focus on unauthorized data extraction rather
than on immediate system disruption.

D. Guard model selection

Although our findings demonstrate superior performance
from the Llama3.370B and Llama3.1405B models, model
selection should be tailored to the specific deployment sce-
nario. When LLMZ+ is not executed in parallel, it introduces
a small synchronous delay to the agent’s response time. This
delay may be exacerbated in agentic scenarios that require
background activities, such as API calls, before delivering a
response to the user. In some cases, it may be preferable to
deploy a smaller model, such as Llama3.18B , and fine-tune
it using the techniques described above. In real-time voice
applications, for example, excessive response latency may
cause users to terminate the interaction, which could negatively
impact business operations. LLMZ+ is not intended as a one-
size-fits-all solution, and careful model selection remains a key
consideration for successful deployment.

VIII. CONCLUSION AND FUTURE WORK

In this work, we introduced LLMZ+, a guard solution that
filters both input to and output from agentic large language
models. Conventional filtration methods generally focus on
detecting malicious activity, which requires frequent updates to
keyword lists or repeated model retraining as new prompt jail-
breaking techniques emerge. In contrast, LLMZ+ is inspired
by the DENY ALL strategy commonly employed in firewall
configurations and implements a dynamic whitelist approach
that does not require retraining. The system specifically identi-
fies compliant user prompts and agent responses, blocking all
other content by default. Our approach is both straightforward
and effective, particularly when deployed with larger LLMs,
and achieved near-perfect detection rates with Llama3.370B
and Llama3.1405B models when evaluated against a set of
the most recent jailbreak attacks.

Future research can expand on this work by integrating a
contextual Retrieval-Augmented Generation (RAG) pipeline to
enhance LLMZ+’s assessment of agent responses. Additional
efforts might focus on embedding content ring-fencing mech-
anisms directly into the LLM engine, further strengthening
the protocol and making prompt injection attacks significantly
more difficult to execute. Overall, LLMZ+ represents a mean-
ingful advancement in the security of agentic AI systems.

REFERENCES

[1] K. Stine, S. Quinn, G. Witte, and R. Gardner, “Integrating cybersecurity
and enterprise risk management (erm),” Tech. Rep. NIST Interagency
Report (IR) 8286, National Institute of Standards and Technology,
Gaithersburg, MD, 2020.

[2] K. Scarfone and P. Hoffman, “Guidelines on firewalls and firewall pol-
icy,” Tech. Rep. NIST Special Publication (SP) 800-41, Rev. 1, Includes
updates as of September 28, 2009, National Institute of Standards and
Technology, Gaithersburg, MD, 2009.

[3] National Institute of Standards and Technology (NIST), “Virtual pri-
vate network (vpn).” https://csrc.nist.gov/glossary/term/virtual private
network. Accessed: 2025-08-17.

[4] GeeksforGeeks, “Daemon processes.” https://www.geeksforgeeks.org/
operating-systems/daemon-processes/, Jul 2025. Accessed: 2025-08-17.

[5] A. Vassilev, A. Oprea, A. Fordyce, H. Anderson, X. Davies, and
M. Hamin, “Adversarial machine learning: A taxonomy and terminology
of attacks and mitigations,” Tech. Rep. NIST Trustworthy and Respon-
sible AI, NIST AI 100-2e2025, National Institute of Standards and
Technology, Gaithersburg, MD, 2025.

[6] National Institute of Standards and Technology (NIST), “Dmz.” https:
//csrc.nist.gov/glossary/term/dmz. Accessed: 2025-08-17.

[7] Y. Liu, G. Deng, Z. Xu, Y. Li, Y. Zheng, Y. Zhang, L. Zhao, T. Zhang,
K. Wang, and Y. Liu, “Jailbreaking chatgpt via prompt engineering: An
empirical study,” 2024.

[8] A. Wei, N. Haghtalab, and J. Steinhardt, “Jailbroken: how does llm
safety training fail?,” in Proceedings of the 37th International Confer-
ence on Neural Information Processing Systems, NIPS ’23, (Red Hook,
NY, USA), Curran Associates Inc., 2023.

[9] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson,
“Universal and transferable adversarial attacks on aligned language
models,” 2023.

[10] M. Gupta, C. Akiri, K. Aryal, E. Parker, and L. Praharaj, “From chatgpt
to threatgpt: Impact of generative ai in cybersecurity and privacy,” IEEE
Access, vol. 11, pp. 80218–80245, 2023.

[11] Z. Yu, X. Liu, S. Liang, Z. Cameron, C. Xiao, and N. Zhang, “Don’t
listen to me: understanding and exploring jailbreak prompts of large
language models,” in Proceedings of the 33rd USENIX Conference on
Security Symposium, SEC ’24, (USA), USENIX Association, 2024.

[12] N. Carlini, M. Nasr, C. A. Choquette-Choo, M. Jagielski, I. Gao,
A. Awadalla, P. W. Koh, D. Ippolito, K. Lee, F. Tramer, and L. Schmidt,
“Are aligned neural networks adversarially aligned?,” in Proceedings
of the 37th International Conference on Neural Information Processing
Systems, NIPS ’23, (Red Hook, NY, USA), Curran Associates Inc., 2023.

[13] Q. Chen, S. Yamaguchi, and Y. Yamamoto, “Defending against gcg
jailbreak attacks with syntax trees and perplexity in llms,” in 2024 IEEE
13th Global Conference on Consumer Electronics (GCCE), pp. 1411–
1415, 2024.

[14] Y. Deng, W. Zhang, S. J. Pan, and L. Bing, “Multilingual jailbreak
challenges in large language models,” 2024.

[15] W. Oh, D. Kim, and W. Chung, “Large language model corruption can
spread between both human and synthetic languages,” in 2025 IEEE
Conference on Artificial Intelligence (CAI), pp. 924–929, 2025.

[16] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, and Y. Zhang, “A survey on
large language model (llm) security and privacy: The good, the bad, and
the ugly,” High-Confidence Computing, vol. 4, no. 2, p. 100211, 2024.

[17] B. C. Das, M. H. Amini, and Y. Wu, “Security and privacy challenges
of large language models: A survey,” ACM Comput. Surv., vol. 57, Feb.
2025.

[18] H. Ferraiolo, R. Chandramouli, N. Ghadiali, J. Mohler, and S. Shorter,
“Guidelines for the authorization of personal identity verification card
issuers (pci) and derived piv credential issuers (dpci),” Tech. Rep. NIST
Special Publication (SP) 800-79-2, National Institute of Standards and
Technology, Gaithersburg, MD, 2015.

[19] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” 2022.

[20] D. Ganguli, L. Lovitt, J. Kernion, A. Askell, Y. Bai, S. Kadavath,
B. Mann, E. Perez, N. Schiefer, K. Ndousse, A. Jones, S. Bowman,
A. Chen, T. Conerly, N. DasSarma, D. Drain, N. Elhage, S. El-Showk,
S. Fort, Z. Hatfield-Dodds, T. Henighan, D. Hernandez, T. Hume,

J. Jacobson, S. Johnston, S. Kravec, C. Olsson, S. Ringer, E. Tran-
Johnson, D. Amodei, T. Brown, N. Joseph, S. McCandlish, C. Olah,
J. Kaplan, and J. Clark, “Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned,” 2022.

[21] A. Robey, E. Wong, H. Hassani, and G. J. Pappas, “Smoothllm:
Defending large language models against jailbreaking attacks,” arXiv
preprint arXiv:2310.03684, 2023.

[22] Protect AI, “Llm guard – the security toolkit for llm interactions.” https:
//llm-guard.com/, 2024. [Accessed: August 7, 2025].

[23] H. Gonen, S. Iyer, T. Blevins, N. A. Smith, and L. Zettlemoyer,
“Demystifying prompts in language models via perplexity estimation,”
2024.

[24] K. Stouffer, M. Pease, C. Tang, T. Zimmerman, V. Pillitteri, S. Lightman,
A. Hahn, S. Saravia, A. Sherule, and M. Thompson, “Guide to opera-
tional technology (ot) security,” Tech. Rep. NIST Special Publication
(SP) 800-82, Rev. 3, Includes updates as of September 28, 2023,
National Institute of Standards and Technology, Gaithersburg, MD,
2023.

[25] A. Vassilev, A. Oprea, A. Fordyce, and H. Anderson, “Adversarial
machine learning: A taxonomy and terminology of attacks and mit-
igations,” Tech. Rep. NIST Artifcial Intelligence (AI) Report, NIST
Trustworthy and Responsible AI NIST AI 100-2e2023, National Institute
of Standards and Technology, Gaithersburg, MD, 2024.

[26] M. Nieles, K. Dempsey, and V. Pillitteri, “An introduction to information
security,” Tech. Rep. NIST Special Publication (SP) 800-12, Rev. 1,
Includes updates as of June 22, 2017, National Institute of Standards
and Technology, Gaithersburg, MD, 2017.

[27] C. Marshall, “Fintech chatbots: The benefits and uses of ai agents
in finance.” https://www.zendesk.com/blog/fintech-chatbot/. Accessed:
2025-08-17.

[28] Ollama Inc., “llama3.1.” https://ollama.com/library/llama3.1. Accessed:
2025-08-18.

[29] Ollama Inc., “llama3.3.” https://ollama.com/library/llama3.3. Accessed:
2025-08-18.

[30] T. J. Baek, “Open WebUI.” https://github.com/open-webui/open-webui.
Accessed: 2025-08-10.

[31] CyberAlbSecOP, “Awesome gpt super prompting.” https://github.com/
CyberAlbSecOP/Awesome GPT Super Prompting, 2023. Accessed:
2025-07-21.

[32] National Institute of Standards and Technology (NIST), “Rag.” https:
//csrc.nist.gov/glossary/term/rag. Accessed: 2025-08-17.

[33] Amazon Web Services (AWS), “What is a RESTful API?.” https://aws.
amazon.com/what-is/restful-api/. Accessed: 2025-08-17.

https://csrc.nist.gov/glossary/term/virtual_private_network
https://csrc.nist.gov/glossary/term/virtual_private_network
https://www.geeksforgeeks.org/operating-systems/daemon-processes/
https://www.geeksforgeeks.org/operating-systems/daemon-processes/
https://csrc.nist.gov/glossary/term/dmz
https://csrc.nist.gov/glossary/term/dmz
https://llm-guard.com/
https://llm-guard.com/
https://www.zendesk.com/blog/fintech-chatbot/
https://ollama.com/library/llama3.1
https://ollama.com/library/llama3.3
https://github.com/open-webui/open-webui
https://github.com/CyberAlbSecOP/Awesome_GPT_Super_Prompting
https://github.com/CyberAlbSecOP/Awesome_GPT_Super_Prompting
https://csrc.nist.gov/glossary/term/rag
https://csrc.nist.gov/glossary/term/rag
https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/what-is/restful-api/

	Introduction
	Background and Related work
	Principles of LLMZ+
	Threat Model
	Typical Agentic LLM Deployment
	Attack Vectors
	Proposed Solution
	Deployment Strategy

	Methodology
	False Negatives
	False Positives
	Decision Threshold (DT)

	Results and Observations
	Practical Considerations
	False Positive Overrides
	Message Pre-processing
	Parallel Execution
	Guard model selection

	Conclusion and Future Work
	References

